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Abstract

-An interpolation scheme is described for values of position, gradient and Hessian at
scattered points in three variables. The domain is assumed to have been tesselated into
tetrahedra. The interpolant has local support, is globally once differentiable, piecewise
polynomial, and reproduces polynomials of degree up to three exactly. The scheme has
been implemented in a FORTRAN research code.
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SIGNIFICANCE AND EXPLANATION

This report describes an interpolation scheme for scattered data in three independent
variables, as they may arise, e.g. in the desciption of temperature or pressure in a three-
dimensional solid. The interpolant will be once differentiable. The user must supply
function values at the scattered points and also values of first and second order derivatives.
The domain of the interpolant is the convex hull of the given points and is assumed to
have been tesselated with tetrahedra. The scheme is piecewise polynomial, and reproduces
all polynomials of degree up to three exactly. A non-portable FORTRAN research code
is available from the author.
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The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the author of this report.
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1. Introduction

Multivariate interpolation problems arise in many situations where physical phenom-
ena involving several space variables (and possibly time as well) are modeled, designed,
analyzed, or simulated. One application might be temperature as a (trivariate) function
of the three spatial variables. The analyst is given a set of four-dimensional data through
which he wishes to pass a smooth trivariate function. In a design context, he may wish
to alter the data interactively until a satisfactory function has been found. Because the
geometric information may be located arbitrarily in four-dimensional space, the interpo-
lation scheme must be able to handle such data. A frequently used approach consists of
smoothly piecing together interpolants defined only on parts of the underlying domain.
Such schemes have the property of being local, i.e. the value of the interpolant at a given
point is dependent only upon a small amount of data close to the point of evaluation.
This has two important practical advantages: Firstly, the cost of evaluation of a scheme is
largely independent of the amount of data, and, secondly, a change in the data alters the
interpolant only in a small region around those points where the change takes place.

We will assume that the domain of interest has been tesselated into tetrahedra, with
the vertices of the tetrahedra being the data points. How the tesselation may be accom-
plished is an important and difficult question which which will not be addressed in this
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paper. However, see Barnhill and Little, 1984, for some answers to this question. An
interpolant that is defined piecewise on tetrahedra is called tetrahedral.

Important attributes of a scheme include the maximum degree of the derivatives that
have to be supplied at the data points and the degree of differentiability of the interpolant.
We use the term C" scheme for C- data to describe a globally r-times differentiable scheme
that requires derivatives through s-th order as data. Usually, a user requires his scheme
to be at least C1, but is unable to provide data of degree larger than 0.

Several tetrahedral schemes are known. Alfeld, 1984a, describes a C' scheme for C'
data. Barnhill and Little, 1984, describe a similar scheme that requires some auxilliary
data. In another paper, Alfeld, 1984b, describes a class of C' schemes for Cm data, for
arbitrary m and in arbitrarily many variables.

However, all of the existing tetrahedral schemes yield rational interpolants. One would
like to have polynomial interpolants for several reasons. Firstly, they are more efficiently
evaluated. Secondly, they are more easily integrated. This is useful, for example, in
the finite element technique for the solution of partial differential equations or in certain
techniques for the generation of missing derivative data (see Alfeld,1984c).

In this paper, we derive a C' scheme for C2 data which yields an interpolant that
is piecewise quintic on each tetrahedron. The scheme is modeled after the well-known
bivariate Clough-Tocher scheme (Strang and Fix, 1973, p. 82). That scheme is a C'
scheme for C' data. Our scheme requires C2 data. Attempts to obtain a trivariate
Clough-Tocher type scheme for C' data have been undertaken by the author and others,
but to date have been unsuccessful.

However, even requiring C2 data is a significant gain over what would be required for
straight polynomial interpolation on a tetrahedron. ienigek, 1973, has shown that such a
scheme would require a polynomial of degree at least 9 (with 220 parameters) and at least
C4 data.

The paper is organized as follows: In section 2, an explicit expression for the bivariate
Clough-Tocher scheme is derived. The purpose of that section is to introduce the appro-
priate machinery in a familiar context. Although the bivariate scheme has been used for
a long time, to the author's knowledge this is the first time that explicit expressions are
given. However, a reader familiar with barycentric coordinates may wish to read only
step 0 in section 2 and then skip to section three which introduces the trivariate scheme.
Section 4 briefly discusses computational aspects.

2. The Bivariate Clough- bcher Scheme

The derivation of the trivariate Clough-Tocher scheme is quite involved algebraically,
and difficult to illustrate graphically because of the three-dimensional domain. Therefore,
in this section, the well-known bivariate Clough-Tocher scheme is derived using precisely
the same approach that will also be employed for the derivation of the trivariate scheme.
The next section will then amount to a description of the differences between the bivariate
and trivariate schemes.

The bivariate Ciough-Tocher scheme uses as data position and gradient at the vertices
of a general triangle. The triangle is divided about its centroid into three subtriangles.
We refer to the overall triangle as the macrotrangle and to its subtriangles as microtri-
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angles. The interpolant is constructed to be a cubic polynomial on each microtriangle.
It is differentiable over the macrotriangle. Continuity between macrotriangles is ensured
by interpolation to the data. Differentiability between macrotriangles is forced by the
requirement that the first order perpendicular cross-boundary derivative along edges be
linear (instead of quadratic). The approach is illustrated in figure 1.

First, some concepts and notation have to be introduced. Three ingredients are funda-
mental to the construction: The Bizier form of a multivariate polynomial, the identification
of the appropriate B1zier nets, and the identification of a particular parameter with each
of the conditions defining the interpolant.

To define the Bizier form of a bivariate polynomial we consider a general triangle with
vertices Vi, where i = 1,2,3. A general point P in 92 is expressed in terms of barycentric
coordinates, that is

3 3

P- bV, where Ebi= 1.
t=I i=J

Any polynomial q of degree m, say, can be uniquely expressed in its B'zier form as

q(P) = Cijkbb2b3.
t+j+k=m

(see Farin, 1983). We will have to differentiate q. Let D denote any (unnormalized)
directional derivative, i.e. D =A where e is a vector in R2. Then

Dq(P) I )!(kbm 3 (2.1)
ijk!

where
Cjk = m(ci+ij,kDbi + ci,+,,kDb2 + cs,,,+iDb3 ) (2.2)

(Subscripts are separated by commas whenever one or more of them cannot be written as
just one character).

The Cjk are the Bzier ordinates of q. They can be associated with the points
Cijk := (iV 1 + jV 2 + kVs)/m. The points (Cijk,,cij,,) E VRare said to be the control points
of the B6zier polynomial, and the set of control points constitutes the Bizer net of q.
If two polynomials are defined on two neighboring triangles, then the resulting piecewise
function is continuous across the interface iff the Bzier ordinates on the interface coincide.
Thus B6zier ordinates on the interface can be identified and the union of the two B~zier
nets can be considered the Bizier net of the piecewise polynomial function defined on the
union of the two triangles. This idea will be expanded below.

We now proceed in 6 steps:
Step 0: Forcing Continuity on the Macrotriangle. (This is step 0 because the task is

accomplished by choosing suitable notation rather than doing analysis.)
We express the centroid of the macrotriangle by V4 = (V + V 2 + V3)/3 and denote

(internal and external) edges by eil := V, - V, (i.e. eq is the line-segment from V, to V, )
where i,j - 1,2,3,4. The microtriangle where b, = 0 (i 1,2,3) is denoted by T.

-3-
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We now extend the notion of barycentric coordinates. Any point P in the macrotri-
angle can be expressed uniquely as

4 4 3

P=EbV, where -b,=1, flb,=O, and b,_?O, i=1,2,3,4.
t=l i=1 t=1

The bi can be thought of as piecewise linear cardinal functions on the triangulation of
the macrotriangle into microtriangles. On each microtriangle, at least one of b1 , b2 , or b3,
will be zero, and the other coordinates will be the ordinary barycentric coordinates from
that microtriangle that contains P.

We will have to differentiate on the microtriangles in the direction of (internal and ex-
ternal) edges. Consider a general triangle spanned by the set {V., Vb, VY} and suppose that
{i,j, k} C {a, b, c}. Then it follows from the cardinal properties of barycentric coordinates
that

=bk 6 5 _ bki (2.3)

where 6 is the Kronecker delta.
The piecewise cubic interpolant (on a general macrotriangle) can now be written as

q(P) = Z , 3!ba (2.4)
i+j+k+1=3 ..

where, by convention, 00 = 1.
The resulting generalized Bzier net is illustrated in figure 2. The function q defined

in (2.4) is a continuous piecewise cubic function on the macrotriangle with 19 parameters

Cijkl.

Note that internal continuity (i.e. continuity everywhere on the macrotriangle) has
been obtained simply by the judicious choice of a notation that makes Bizier control points
coincide on internal edges.

Step 1: Forcing Internal Differentiability. In this step, we impose conditions on the
B~zier ordinates that will ensure that the piecewise cubic function is differentiable ev-
erywhere on the macrotriangle. The standard way of forcing differentiability between
triangles is to require that certain groups of 4 B1zier control points each be colinear (see
Farin, 1983). We rederive the conditions for the present special case because the technique
is generally useful, and because it is needed here in a slightly more general context (i.e.
differentiability at the centroid).

Consider for example edge e14. Any cross-boundary derivative on that edge must be
independent of whether it be evaluated on the microtriangle 7'2 or the microtriangle T3. It
is sufficient to consider any one particular cross-boundary derivative, because any other one
can be expressed as a linear combination of the considered one and the tangential derivative
(in the direction of edge e 14) which is continuous because the function under construction
has been forced to be continuous everywhere on the macrotriangle. So consider for example
the derivative in the direction of edge e3 4.

-5-
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In order to obtain an appropriate condition we carry out the differentiation on both
T2 and T3, restrict both of the resulting expressions to edge e14 , and equate the coefficients
of the resulting quadratic.

We differentiate on '2 directly using (2.1-3) and on T3 by expressing e34 = e41  e42,
and then using (2.1-3). Carrying out this plan yields the equations

Coo3 = (c1002 C0102 C0012)/3

Cloo2 = (c110 1 -" c1o1 C2 ooi)/3

C2001 = (C 2 1o0 - C2010 - C3000)/3

Proceeding similarly on the other two internal edges yields the conditions:

C0102 = (C, 1 0 1 + col1 - C0201)/3

C0201 = (C1200 + C0300 + C0210)/3

C0012 = (C10 11 + C0111 + 021/

Co021 = (C1o 2 o + C0120 I c0030)/3

Thus, in the present special case, the differentiability conditions simply require that
B6zier ordinates on internal edges (in the interior of the macrotriangle) be the averages of
the neighboring Bizier ordinates in the directions given by the internal edges! Also notice
that in each of the above conditions one of the B6zier ordinates plays a special role. Each
equation can be thought of as expressing the parameter on the left in terms of the right
hand side which involves parameters that are still to be determined.

At this stage, q is a piecewise polynomial function that has 12 parameters still available
and that is continuously differentiable on the macrotriangle.

The C' conditions have a remarkable consequence: At the centroid, the function q is
actually C 2! This fact was first observed by (Farin, 1983) but the following argument will
be useful in the trivariate context: Consider for example the microtriangles T, and T3 . We
have to show that three independent second order derivatives are continuous when going
through the centroid from one microtriangle to the other. So consider the derivatives

a2 a2 a2

ae24ael 4 ' ae248e 34, and ael4ae34 "

Of these, the first two are tangential in the direction of e24 which is shared by T, and
T3 . They are hence continuous. Similarly, the third derivative is continuous between the
microtriangles T and 7'2 since it is tangential in the direction e34 . It is also continuous
between T2 and T3 since it is tangential in the direction of e14. (Obviously, all mixed
partial derivatives commute). Hence it is continuous between T, and T3. This completes
the argument.

Step 2: Interpolation to Vertex Data. The key observation is that we enforced dif-
ferentiability at the vertices of the macrotriangle and that hence we need to interpolate
to each datum only on any one particular microtriangle that is convenient for that da-
tum. With this observation, interpolation is straightforward. For convenience, we think
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of the data as being given in terms of some primitive function F. Proceeding similarly as

in (Barnhill and Farin, 1981) we obtain:

C3oo = F(VI)

OF

C21( (V,) - 3coaoo))/3

C01(' = F (V,) - 3c3 0 0o))/3

c0300 = F(V2)

Cl2O I (= F (V2) + 3co3oo))/3

Co2C ,o a (V2) -3co3oo)))/3
49C23

C0030 = F(V3)

C1020 = (a-3F (V3) + 3coo3 o))/3

c012o 0_ (V3)+ UCoo3o))/3

ae32

At this stage, we have obtained an interpolant that is differentiable on the macrotrian-
gle. The construction so far has not taken into account smoothness requirements between
macrotriangles, and there are still three parameters at our disposal.

Step 3: Forcing Global Smoothness. We wish to apply the Clough-Tocher scheme on
each macrotriangle in a given triangulation such that the overall function is differentiable
everywhere in the domain covered by the triangulation. Along an external edge of a
macrotriangle, the interpolant reduces to a univariate cubic which is uniquely determined
by the four data at the endpoints of the edge. At this stage, the scheme is therefore globally
continuous (but not differentiable).

To force differentiability it is again sufficent to consider one particular cross-boundary
derivative across an edge joining two macrotriangles. However, the only meaningful direc-
tion is perpendicular across the edge because that edge is the only object common to the
triangles. Since the interpolant is piecewise cubic the cross-boundary derivative restricted
to the edge will in general be quadratic. The data given at the edge impose only two
conditions. Therefore, a third one must be imposed consistently on both macrotriangles.
It is natural to require that the perpendicular cross-boundary derivative be linear. This
choice maintains the maximum degree of precision (quadratic) that is attainable.

We proceed as follows: Let (i,j,k) be a cyclic permutation of (1,2,3). A normal to
ejk can then be written as

n, = ej4 - "iejk (2.5)

where -1i is determined by the requirement that nioejk = 0. i.e. y, - (eJ4oejk)/(ejkoe)k).

We then differentiate q in the direction of n, using (2.5) and (2.1-3), restrict the derivative
to edge ejk, and set the leading coefficient of the resulting quadratic equal to zero. This
yields the conditions

-8-'



C0111 = (1)(-C0300 - 3C0 210 - 3cu20 -r C0 030)

+ (-C030O - 2Co 210 - C01 20  Coo21 + Co2o))/2

C1011 = (-Y2(-coo3o "  3C1020 - 3C2 0 1 0 - C3000)

+ (-coo3o + 2c1o2 0- C2o1o- C2001+ Co 2 l))/2

C1101 = (13(-C300c, 3C 2 100 - 3c 120 0 - C0300)

+ (-c30ci0 -- 2C2 10 0 - C1200 - C2001 * C0201))/2

At this stage, we have achieved our objective: a piecewise cubic polynomial interpolant
that is gobally differentiable. The construction used up all parameters, i.e. the interpolant
is unique. In the trivariate case, however, there will be a family of smooth interpolants.
In that case, disposing of the remaining parameters will constitute step 5.

The above equations for the coefficients of q describe a linear system. However, in
this case, the system happens to be triangular! Thus the coefficients can be computed by
Forward Elimination, e.g. in the following sequence: C3 0 0 0 , c2 010, C2 100, C0 3 0 0 , Cl2 0 0, C02 1 0,

C0030, C 1 0 2 0, C0 1 2 0, C2 0 0 1, CO2 01, C0021, Cll01, Cl011, C011 1, C 1 002, C0 1 02, C0012, C0 0 03.

Each of the parameters is naturally associated with a particular condition, and we
can think of any condition as eliminating the corresponding parameter. The sequence of
evaluation, and the type of condition corresponding to a parameter is illustrated in figure 3.

3. Construction of the lYivariate Scheme

In this section, we follow the template provided by the preceding one. We assume that
we are given values of position, gradient, and Hessians at scattered points in %3 (see figure
4. for the stencil). We also assume that the domain has been tesselated into tetrahedra,
and only consider the interpolation problem on a general tetrahedron.

The system of equations determining the interpolant has been derived and solved using
the symbol manipulation language REDUCE (A.C. Hearn, 1983). Writing down all the
equations and their solution in the text would be tedious and error prone. Instead, the
REDUCE output of the solution has been reproduced photographically in the appendix.
For a thorough understanding of the material in this section, the reader should familiarize
himself with the organization of the appendix, and keep refering to it when reading this
section. For a less thorough understanding, this section may be read by itself.

3.0 Notation and Internal Continuity

We consider a general macrotetrahedron with vertices V1, V2, V3 and V4 , and denote
the centroid by V5 = (V1 + V2 + V3 -i- V4)/4. The location of a general point P is expressed
as

5 5 4

P=EbVi where bi= 1, fIb= o, and b, >0, i=1,2,3,4,5
i=1 :~l i=1

and the function to be constructed is of the form

5!
q(P) ' Ctk mbb1 bbb5

* 4j + k -* + m-95
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Note that our interpolant will be piecewise quintic. Since the data include second
order derivatives, on any edge there are six degrees of freedom (position and first and
second order tangential derivatives at each vertex). Thus, using any degree less than 5
would imply that data could not be supplied independently at the vertices. Also, since an
arbitrary number of edges may emanate from a given vertex, the specification of derivative
data - which usually is a necessary preprocessing step - could not be carried out on an
individual tetrahedron, or a set of points close to the given vertex, but rather has to take
into account the data at all other points, making derivative generation a process. As was
pointed out in the introduction, it would have been preferable to build a C' scheme for
C' data, which could have utilized piecewise cubic functions, but attempts to do so have
not succeeded to date.

At this stage, q is continuous on the macrotetrahedron, and contains 121 free param-
eters.

3.1 Internal Differentiability

As in the bivariate case, we obtain the conditions that B~zier ordinates on the inter-
faces between microtetrahedra should equal the average of their three neighbors (in the
directions of the internal edges). For details see equations no. 53-78, 91-111, and 116-121
in the appendix.

At this stage, q is differentiable everywhere on the macrotetrahedron, and contains
121 - 53 = 68 free parameters. However, there is a subtle difficulty: We contemplate in-
terpolation to vertex data, including second order derivatives. As in the bivariate case, we
would like to interpolate to data only on suitable microtetrahedra, and enforce interpola-
tion on the other ones by smoothness. Thus we have to enforce second order differentiability
at the vertices of the macrotetrahedron, although the scheme under construction is only
C'.

Remarkably, it turns out that the scheme is already C 2 at the vertices, in spite of our
not having made any effort to achieve this. The crucial fact is that three (rather than two)
microtetrahedra meet at each vertex. The argument is similar to the bivariate case where
we obtained serendipitous C 2 smoothness at the centroid of the macrotriangle:

Consider, for example, vertex V1 and continuity of second order derivatives between
the microtetrahedra T2 and T3. We need to find six independent second order derivatives
that are continuous at V1. The interface between T 2 and T3 is the triangle spanned by

{Vj, V4 , Vs}. Because the scheme is already C1, all second order derivatives tangential in
that triangle will be continuous. Thus for example

02 02 02 02 02

Oel,4 e4 ' ae 1 4 e3e1 5 ' 4ee ,5 ' 0e12 0e14 ' oeI249eIs

are all continuous at Vi. We need one more derivative, This is given by

02
- ae25i0e35

which is continuous because it is tangential between T 2 and 74 and also between 73 and
7'4, and hence between 72 and '4. This completes the argument.

-11-
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It is noteworthy, although not relevant to our construction, that by a similar procedure
the function q can be shown to be C3 at the centroid (where all four microtetrahedra meet).

3.2 Interpolation to Vertex Data

Having forced the appropriate degree of internal smoothness, interpolation to the
vertex data is again straightforward. 40 parameters are required, see equations 1-40 in the
appendix. At this stage, the scheme does interpolate and is internally CI. We have to use
some of the remaining 28 parameters to force external smoothness.

3.3 Intertetrahedral Smoothness

External smoothness is built up starting at the edges of the macrotetrahedron and
then proceeding to its faces.

Continuity across edges. This has already been achieved, since along any edge the
function q reduces to a univariate quintic polynomial which is determined uniquely by the
six data given at the vertices of the edge.

Differentiability across edges. Any cross-boundary derivative across an edge will in
general be univariate quadratic. However, the vertex data imply only four conditions. The
resulting ambiguity is removed by requiring that any first order derivative perpendicularly
across an edge be in fact cubic. This condition is in terms of the edge and data on the
edge only, and nence forces differentiability across the edges.

We exemplify the analysis by considering edge e 12. We need to consider derivatives in
two independent directions perpendicularly across the edge, and construct one direction
in each of the two microtetrahedra joining along the edge. For example, consider the
microtetrahedron T4. We express a normal to e12 as

n12 3 :- e13 + 17123e12

where
wh reI23 oe12 ---- 0, i.e. e132 o---

e 1 2 o e1 2

Requiring that aq/an12 3 be cubic yields a condition for C22 10 0. Similarly, considering
e12 a part of T3 yields a condition for C2 20 1 0. Ten more similar conditions are obtained
by considering the other five edges of the macrotetrahedron. See equations 41-52 in the
appendix for details.

Continuity across faces. This is implied by our course of action along the edges.
On each face, the interpolant reduces to a specific bivariate quintic interpolant (Qis, see
Barnhill and Farin, 1981) which is determined uniquely by the vertex data.

Differentiability across faces. Consider a derivative perpendicular to a face. In general,
this will be a bivariate quartic polynomial, having 15 degrees of freedom. Of these, 9 have
been removed by vertex interpolation and three have been used in forcing the derivative
to be cubic along edges. The last three degrees of freedom are removed by requiring the
derivative on the face to equal a reduced cubic which interpolates to the nine data on the
face (and is cubic along edges), and where the coefficient corresponding to the centroid of

-13-
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the face has been chosen so as to minimize the sum of the squares of the third derivatives
in the directions of the edges.

Specifically, if the cross-boundary derivative on a face spanned by V', V, Vk is ex-
pressed as

3!

then

dill = (3(d 21o + d201 -t d120 di12 + d0 2 1 + do1 2 ) - 2(d 0o 3 + d03o + d3o0 ))/12

This choice maintains quadratic precision of the derivative (and cubic precision of the
overall interpolant q).

We need an expression for a direction perpendicular across a face. Consider for ex-
ample face 1. The normal is expressed as

nl : e2 5 + ale 23 + 1e3 4

where a, and /31 are determined by the linear equations

n I 0 e2 3 = nI o e34 = 0.

This process yields three conditions on each face. Detailed expressions are listed in
equations 79-90 of the appendix.

At this stage, we have an internally and externally differentiable interpolant which,
however, still contains four free parameters.

3.4 Condensation of Parameters

We still have to dispose of the four parameters C0 11 1 2 , CI0112, C11 0 12 , and c11 1o2. In
choosing them, it is desirable to meet two objectives:

(1) The scheme should reproduce exactly polynomials of a degree as high as possible (i.e.
cubics).

(2) The interpolant should be independent of a relabeling of the vertices.

These objectives are achieved by picking the remaining parameters so as to minimize
(Dlq(V)) 2 for each T where, for example

e_ 2- e-,,sa4

See equations 112 through 115 in the appendix for the detailed conditions.

3.5 Solution of the Linear System
The conditions derived in the preceding subsections constitute a linear system of 121

equations. In the bivariate case, the corresponding system happened to be triangular. In

-14-



this case, it turns out that only 106 equations can be solved by Forward Substitution, and
that the remaining 15 equations form a full matrix. The overall system was solved using
REDUCE, and the results are listed in the appendix.

3.6 Precision of the Trivariate Scheme

An important attribute of any interpolation scheme is its degree of precision, i.e. the
maximum degree of a polynomial that is reproduced exactly by the scheme if the data
are generated by the polynomial. Tracing back through the construction it is easy to see
that our scheme is precise for cubic polynomials. On the other hand, by construction,
derivatives perpendicular across a face are reduced cubics with only quadratic precision.
Therefore, the overall scheme cannot have more than cubic precision. A parameter count
might suggest that a higher degree is possible: There are 40 vertex data, and a trivariate
quartic has only 35 coefficients. However, the quartic bb 2b3b4 generates homogeneous
data at the vertices. Hence any linear interpolation process will yield the zero function as
the interpolant. Thus our scheme has the maximum attainable degree of precision.

4. Computational Aspects

In this section, some practical aspects are discussed as they have been incorporated
into a (non-portable) FORTRAN research code that can be obtained from the author.

1. Construction of the Code. The present scheme shares with most other local mul-
tivariate schemes the drawback of great computational complexity. The feasibility of pro-
gramming such schemes from printed formulas is called into question. Instrumental in the
writing of the code was a feature of the symbol manipulation language REDUCE that
allows it to write formulas in FORTRAN syntax after deriving them from much simpler
ingredients.

2. Labeling of coefficients. Having coefficients with five subscripts is convenient for
the analysis but not suitable for a computer :mplementation. One would like to use a
linearly indexed array for storing the coefficients. We address the problem somewhat more
generally:

Let I denote the set of all k-tuples of non-negative integers that add up to m. There
are M +:= (mk-) elements in I. A bijective correspondence between l and {1,2,... M)
is defined in terms of binomial coefficients by:

N(ij,...ik) + 1 k I+ 0 + (k 2 + "'"I+ ) +  11+i - 1 tk I

For the tetrahedral Clough-Tocher scheme, m = k 5, M = 126, and the indices
N(I,1,1,I,2) 50, N(1,1,1,2,1) = 99, N(1,1,2,1,1) 98, N(1,2,1,1,1) = 95, and
N(2,1,1,1,1) =85 are unused.

3. Identification of the microtetrahedron. Suppose the macrotetrahedron in which
the point of evaluation, P, say, resides has been identified. (This is done by evaluating
the barycentric coordinates with respect to the tetrahedron and checking that they are
all non-negative.) Now the microtetrahedron containing P must be identified. Denote
the barycentric coordinates by b,, bj, bk, bi where {i,j,kl) {1,2,3,4} and assume
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b, = min{b,, bj, bk, bl}. Then P is contained in T,. Denoting the barycentric coordinates
of P with respect to T by ds, dj, dk, di it is easy to see that d5 = 4b1, d, = bj - bi,
dk =bk - b, d =bi - bi.

4. Recursive Evluation of Interpolant. The Bdzier form of a polynomial allows for
a particularly simple recursive form of the evaluation. For details see Farin, 1983.

5. Efficient evaluation of coefficients. Coefficients are evaluated only on macrotetra-
hedra where they are needed. The user has the option of storing them after evaluation, or
reevaluating them when needed.

6. Verification of Code. The pilot code developed by the author has been tested by
the analyzing tool MICROSCOPE (Alfeld and Harris, 1984) and it was verified that the
code does indeed possess the smoothness, interpolation, and precision properties that are
implied by the mathematical construction.

Conclusions

The scheme developed here is the first explicitly given piecewise polynomial C, inter-
polant for tetrahedral data. It has the drawback of requiring C2 data.
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Appendix: Coefficients of Interpolant

In this appendix we list the formulas as they have been computed by REDUCE.
Partial derivatives of the Function F have been denoted by subscripts, for example

OF
F14(V,) = a (V,)

0e 14

and

F1413 (V) - F (VI)
141 0ae 13ae 14 (1

1: c5oooo = F(V)

2: C40010 = (5csoooo + F 14 (Vl))/5

3: C40100 = (5csoooo + F 13 (VI))/5

4: C41000 = (5csoooo + F 12(V))/5

5: c30020 = (-20c5oooo + 40C40010 + F1414 (Vi))/20
6: C30200 = (-20c50000 + 40C40100 + F13 1 3 (Vi))/20

7: C32000 = (-20c0oooo + 40c41oo + F1212 (V))/20

8: C3010 = (-20cSoooo + 20C40100 + 20C40010 + F1413(Vl))/20

9: c310l0 = (-20c5oooo + 20c41000 + 20C40010 + F1412(Vi))/20

10: C3100 = (-20csoooo + 20C41000 + 20C40100 + F1312 (Vl))/20

11: c05000 = F(V 2 )

12: C04010 = (5Cosooo + F2 4 (V2))/5

13: C04100 = (5COSO00 + F 2 3 (V 2))/5

14: C14000 = (Scosooo + F2 1 (V 2))/5

15: C03020 = (-2Ocosooo + 4Oo4010 + F 24 24 (V 2 ))/20

16: C03200 = (-20cosooo + 40co41oo + F2323 (V2))/20

17: C23000 = (40c14000 - 20Cosooo + F212 1(V2))/20

18: C03 10 = (-20co5ooo + 20co4 10 0 + 20cO4010 + F24 23 (V2))/20

19: C13010 = (20C14000 - 20cosooo + 2c0c4010 + F 24 2 1 (V 2 ))/20

20: C13100 = (20c14000 - 20cosooo + 20co4100 + F23 2 1 (V 2))/20

21: coosoo = F(V 3)

22: C00410 = (5Coosoo + F 3 4(V))/5

23: C01400 = (SCoosoo + F3 2 (V3 ))/5

24: C10400 = (5CO0s00 + F3 1 (V 3 ))/5

25: C00320 = (-20coosoo + 4 Ocoo41o + F3434(V3 ))/20

26: C02300 = (40co14oo - 20coosoo + F3 2 3 2 (V3))/20
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27: C20300 = (40c10400 - 20coo5oo -+ F3 131 (V3))/20

28: C01310 = (20co14oo - 20coosoo + 20coo4lo - F3 43 2(V))'20

29: C10310 = (20C10400 - 20coosoo -i- 20c00410 ± F3 431(V3 ))/20

30: C11300 = (20¢10400 + 20001400- 20c0 0 50 0 
- F3 2 3 1 (V3 ))/20

31: oooo = F(V4)

32: C00140 = (5CoOSO + F43(V4))/5

33: C01040 = (5Co050 + F 42(V4))/5

34: C 10040 = (5cooo5o + F41(V4))/5

35: c0o230 = (40oo14o - 20000050 + F 4343(V4))/20

36: C02030 = (40c0O40 - 20Cooo5o + F 4242(V4))/20

37: C20030 = (40010040 - 20coooso + F 4141 (V4))/20

38: C011O30 = (20c01040 + 200o140 - 20coooso + F 4342(V4))/20

39: C10130 = (200loo40 + 200oo14o - 20coooso + F434 1(V4))/20

40: C11030 = (20cloo40 + 200olo40 - 20coooso + F424 1 (V4))/20

41: C22100 = (-Y123(Csoooo - 5C41000 + 10C32000 - 10c23000 + 5c14ooo - C05000) + 0SOOOO -
4C41000 - C40100 + 6032000 + 4031100 - 4023000 + C14000 + 4c13100 - C04100)/6

42: 022010 = (-Y]2 4 (CSOOOO - 5041000 + 10032000 - 10C23000 + 5014000 C- 05000) + C50000 -

4C41000 - 040010 + 6C32000 + 4C31010 - 4C23000 + 014000 + 401301o -C 04010)/6

43: 021200 = (-Y132(CSOOOO - 5040100 + 10C30200 - 10020300 + 50lo4oo - 000500) + 050000 -

C41000 - 4040100 + 4C31100 + 6030200 - 4C2030 0 + 4c11300 + C1o400 - C01400)/6

44: 020210 (-Y 34(Csoooo - 5C40100 + 10C30200 - 10020300 + 501o4oo - C00500) + C5oooo -

4C40100 - 040010 + 6C30200 + 4c30110 - 4020300 + C10400 + 4c0310 - C00410)/6

45: 021020 = (-Y142(Cs0ooo - 5040010 + 10o30020 - 1 0 C2003 + 50o1040 - COOOo) + 0SOOOO -

C41000 - 4040010 + 4031010 + 6C30020 - 4C20030 + 4co30 + 010040 - C01040)/6

46: C20120 = (-Y14a(s0ooo - 5040010 + 10c30 0 20 - 10C20030 + 5C10040 COOOSO) + 050000 -

C40100 - 4C40010 + 4c3OllO + 6c3oo2o - 4C20030 + 4c10130 + C10040 C- 00140)/6

47: 012200 = (-Y231(COSooo - 504100 + 10C03200 - 1002300 + 50O400 - C00500) - 014000 +

40131o + 4011300 - 010400 + 00500o - 4CO4100 + 60o3200 - 4 02300 + C01400)/6

48: 002210 = ('Y234(oo000 - 5004100 + 10C03200 - 10C02300 + 5co1400 - COOoo) + C05000

404100 - 004010 + 603200 + 403110 - 402300 + 001400 + 401310 - C00410)/6

49: 012020 = (1241(050 - 5C04010 + 10003020 - 10002030 + 5001040 - 000050) - 014000 +

4013010 + 4011030 - 010040 + 005000 - 404010 + 6003020 - 402030 + C01040)/6

50: 002120 = ( Y243(o00sooo - 5004010 + 10003020 - 10002030 + 501040 - 00050) + 0Ooo0 -

C04100 - 404010 + 4co311o + 6003020 - 4Co2030 + 4001130 + C010 40 - C0140)/6

51: 010220 = (-1341(Cooo0 - 5CO0410 + 100o0320 - 10O00230 + 50oo14o - C00050) - 010400 +

4010310 + 4010130 - 010040 + 000500 - 400410 + 6C00320 - 40o0230 + C00140)/6

52: C0122o = (s342(Co0500 - 5 o041C + 10Co0320 - 10Co0230 + 50oo40 - 000050) - C014oo +

40310 + 4c01130 - C01040 + 000500 - 4o0410 + 6c0o320 - 4o0230 + C00140)/6
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53: C40001 (CSOOoo + C41000 + C4 0 1 00 + C4o(Ilo)/4

54: £31001 = (£41000 + C32000 + C3 1 100 + C31010)/4

55: £22001 = (£32000 + C23000 - C22100 + c2201o)/4

56: C1301 = (C23000 + C14 000 + C13100 + c13o10)/4

57: C04001 = (C14000 + C0o0o + c04100 + C04010)/4

58: C30(11 = (c4olO0 + C 310 + C302oo A- C30)110)/4

59: C03)(1 = (£13100 + c0 4 100 + C0 3 2 00 + co311o)/4

60: £20201 = (C30200 + C2 12 00 + £20300 + C2 o21o)/4

61: C02201 = (C12200 + C03200 + C02300 + C02210)/4

62: C10301 (C20300 + C 1300 + C10400 + c10310)/4

63: C01301 = (C1 1300 + C02300 + C01400 + C01310)/4

64: C0040 1 = (£10400 + C01400 + C00500 + C00410)/4

65: £30011 = (C40010 + C31010 + C30110 + C30020)/4

66: C0 30 1 1 = (C13010 A C04oo + Co3 1 10 + C03o20)/4

67: C00311 = (C10310 + C01310 + o00410 + C00320)/4

68: £20021 = (C30 020 + C21020 + C20120 + C20030)/4

69: C02021 = (£12020 + £03020 + C02 120 + C02030)/4

70: C00 2 21 = (£10220 + C01220 + £00320 + C00230)/4

71: C10031 = (C20030 + C11030 + £10130 + cloo4o)/4

72: CO1O31 = (C11030 + C02030 + C01130 + Co1040)/4

73: cool3I = (Ceo130 + C01130 + Coo 230 + ooio)/4

74: C00041 = (CIOo4o + £o14o + C00140 + oooso)/4

75: C300 02 = (C40001 + C31o0 + C30 1 01 + 30011)/4

76: £03002 = (£13001 + C04001 + C03101 + CO3O11)/4

77: £00302 = (£10301 + £01301 + £00401 + C00311)/4

78: C00032 = (£10031 A- £01031 A- C00131 A- C00040/4
79: C02111 = (GI(23cosooo-61CO4 lOO-38O 4 O1 o +590o3200 +86cO3l 1 o+21eo3 0 2 0 -43eO 230 0 -

48Co2210 - 21Co212o - 22Co2030 + 31Co14oo + 2co131o - 15Co1220 + 24c113o + 9COlO4O -

9eoosoo - 2£oo41o + 15CO0320 - 2coo230 - 9Co0140) + 01(23eo41oo - 23eo4olo - 38£o3200 +
38co3o2o + 21eo2300 + 27£o221o - 27Co212o -21co2030 - 22 col4oo 22col3o - 22 Coll3o +
22£olo4o + 9 eooSoo - 7Coo41o - 17Coo32o + 17eoo230 + 7eo14o - 9£o0050) + 23cosooo -
38co4100 - 38cO4O10 - 23co400l + 21Co3200 + 48co31 A + 38co31ol - 21CO3020 + 38CO3O11 -

22Co2300 - 21Co22o1 - 22co2o3o - 21Co2o21 + 9 Co1400 + 2co,310 - 22ooli - 15CO1220 +

2collco + 9O1040 + 22coo31 - 9CO0401 - 2Co0311 + 15Coo221 - 2coo131 - 9eooo41)/48

80: CO211 = (a1(9eosooo - 31eo4100 -+ 2 c£O4Olo + 43o32o0 - 2c03110 - 15C03020 - 59C02300 +

48Co2210 + 15C02120 + 2co2o3o + 61CO,400 - 86co131o - 21CO122o - 24co!13o - 9CO1040 -

* 2 3 coosoo -t- 38Co0410 - 2 1 Coo32) + 22o0230- 9Coo14) + 31 (9C041 - 9C04010 - 22Co3200 +
24Co3110 - 2 Co3o2o + 21eo230 - 21Co22 r-- 15C02120 + 15C0203o - 38eo1400 + 86Co1310 -
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48001220 200113(1 - 2 00104c -- 2 3cooseoo -
6

]C04ln - 59C00321 - 43000230 + 31C0140 -

gcooo60) + Qoosooo - 22c041(O +~ Uoo40i0 - 9C04001 -~ 21003200 - 22cO3a 1 - 15003020 -I
200301, - 38C02300 +- 480022(1 - 21002201 -t 2co2o30 - 15C02021 ~-23C01400 - 3 8 oisio +~

380o011- 2
1C0,220 - 22001130 + 900:040 - 20010)31 - M00401 -t 3 8 cOO311 - 21000221 +

22coc( 13 1 - O00c41)/48

81: C01j12 3 = (ai (gtosoooo - 7c0410d(,- 220(401(l- l 7 cO3200 - 2 2 c031 lo - 2 1CO302CI+ 17Co2300 +
27c02121 - 38cO2c13( -,- 7cO140o - 22cOo1310 - 27c(1221 -t- 23c0o41 - Qoosoo + 22c00410 -

21C0032(1-, 38000230 - 230001l40) + il (gC04100 - 9C04010 + 2003200 - 2 4 cosio -i- 22003020

15002300 + 15C02210 + 21C0 2 120 - 21C02030 +- 2001400 - 2001310 4- 48001220 -
8 6 CO1130 +'

38001040 +' gcoosoo - 31C00410 + 43000320 - 59CO0230 + 61c0014C' - 23000080) + 9ooo +

2CO4100 - 22004010 - 9C04001 - 15C03200 - 2O3101 + 21C03020 + 22cO3oi, + 2002300 -I

15002201 + 48002120 - 38002030 - 21C02 021 +~ 9001400 - 22c01310 - 2 coI3o, 4- 2 1O1220
38c01,30 +23c01040*-38c01031 - 9CO0401 +22c00311 - 21000221 + 38coosi - 23C00041)/48

82: C20111 = (012(23C4010O-23C4Oo1o-38C3020O+38csOO2O+2lC20300+27C2021O-27C20120-

21020030 - 22010400 + 22c 10310 - 22010130 + 22lO 1040 + 9coosoo - 7000410 - 17000320 +

17C00230-t7c00,40--9C00050) +i2(-23c5o000+38C40100+61o4001o-21o30200-86col,1-

59030020 + 22C20300 + 21020210 +i 48C20120 + 43C20030 - 9C1 0 40 0 - 24closio + 15010220 -

2010130 - 31cO~O4o + 9C00410 + 2000320 -15C00230 + 2000340 -+ 9000080) + 23C40100 -

23C40001 - 38C30200 - 38030110 + 38C30101 + 38030011 + 21020300 + 48C20210 - 21C20201 +-

21C20120 - 21020021 - 22c10400 + 22010301 - 22010130 + 22010031 + 9000500 + 2000410 -

9CO0401 15C00320 - 2c0031, + 2000230 + 15C00221 + 9CO014 0 - 2coolal - 9C00041)/48

83: C10211 (Ct2 (9C4 0100 - 9040010 - 22C30200 + 24c3o1,0 - 2C30020 + 21C20300 - 21C20210

15C20120 +- 15020030 - 38010400 + 86 C10310 - 48010220 + 2clOI30 - 2ciOO40 + 23coo~oo -

6CO 4Io-4593 2 -43c 0 0 230O±3lc0 0, 4 0-gCoO05)-4+132(-9CS0000+22C40100+ 7 40010-

21C30200 - 22C301104+ 17c30020 + 38020300 -27C20210 - 17C20030 - 230,0400 + 27cl 0 220 +
220,0130 - 7010040 + 23000410 - 38000320 + 21000230 - 22000140 + 9CO0050) + 9040100 -

9040001 - 22C30200 + 2030110 + 22C30101 - 2030011 + 21C2030 0 - 21020201 - 15C2 0 120 -+

15C20021 - 38010400 + 48lO31i + 38010301 + 2010130 - 2010031 +4 23coosoo - 38000410

23000401 + 21000320 + 38000311 - 2200230 - 21000221 + 9000140 + 22000131 - 90000401/48

84: 010121 = (a2(9C01 0 0 - 9040010 +t 2 C30200 - 240301104+ 22030020 - 15020300 + 15020210 +

21C20120 - 21020030 + 20,0400 - 2010310 + 48030220 - 86C0130 + 38010040 + 9CO0500
31000410 + 43000320 - 59COCJ23 0 +- 6 IC0014Cl - 23ooo~o) + 32(-9C50000 - 2C40100 +
31C40010 + 15030200 + 2c3011ic, - 43C30020 - 2C20300 - 15C20210 - 48020120 + 59C20030

9010400 + 240103:0 - 21010220 + 86010,30 - 61CI0040 + 9000410 - 22000320 + 21000230 -

38000140 + 23coooso) + 9040100 - 9040001 + 2030200 - 22030110 - 2030101 + 22030011 -

15020300 + 1,5020201 + 21C20120 - 21C021 + 2010401- 2010301 +1 48010220 - 38010130 +
38010031 +4 9C050 - 22C00410 - 900040, + 21000320 -- 22000311 - 38coo2 30 - 21000221 +

23000 140 + 3800013l - 23000041)/48

85: C21011 = (c03(-23c5ooooi + 38041000 +4 61C40010 - 21C3 2 00 0 - 86031010 - 59030020, +
22023000 + 21022010 + 4 8C21020 -+ 43020030 - 9C14000 - 24013010 + 15012020 - 2011030 -

31010040 + 9004010+ 2003020- 1502030 + 2001040+ 9COooso) + (33(23050000 -6104l000-

38C40010 + 59032000 -4 8603,010 + 21030020 - 43C23000 - 48c220110 - 21C21020 - 22020030 +
31014000 + 2013010 - 15C12021 + 241103(1 -+ 
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2c 0 2O3 o - 9cOc104o) ± 23C400 1 0 - 23C4001 - 38c3 1 (,1 lo - 38C3 100 1 - 38c30 0 20 + 38c30011

21C2 20 1o - 21C 2 200 1 + 4 8c21o20 - 2 1C20030- 21C200 21 - 22cI 3oio + 22c13oo 1 - 2 2 cloo4o t-

22cloo31 -1- 9co4010 - 9 co4ool - 2c03120 - 2 c13o1 - 15co 20 30 + 15c0202 1 + 2coO40 -

2coo31  9Cooo 50 - 9Co 0o 4 1)/'48

86: c 1 2 0 1 1 = (03( -9C5(0o . 22C4 1 0 r,-- 7C4(1(,1(- 21C32--,C-- 22C3 10 1 0+ 17C30 0 2 0 + 38C2 3000-

27C2 2010 - 17C 20 03 0 - 2 3c14O(c, - 27c21 , 22 , + 22c, 10 3, - 7c 10 0 4 0 + 23CO40 10 - 38C030 20-

21CO2030 - 2 2 Co1040 + 9CO00O5) -, 33(9C50000 - 31C41000 - 2C40010 + 43C32000 - 2c31010-

15C30020 - 59C2 3 0 0 0 -t 48C2201C + 15C2 1 020 + 2C20030 + 61c 1 4 0 0 0 - 86cI30 10 + 21c 1 2020 -

24c 1 1030 + 9C1 0 0 40 - 23Co5oo0  + 38C0 40 10 - 2 1C03020 - 22c0 20 30 - 9CO1 04 0 ) + 9C40010 -

9C40001 - 22c 31 01 0 + 22C3 100 1 + 2C30020 - 2c30011 - 21C2 201 0 - 21C22 00 1 - 15C20030 +

15C20021 - 38c13010 + 38c3001 + 48c12020 + 2c10040 - 2Cloos- + 23 co400 - 2 3 c04001 -

38C03020 + 38C0 301 1 + 21C0 2 030 - 21CO2021 - 22c01040 -t 
2 2 co031 + 9 CO0050 - 9C00041)/48

87: C11021 = (a3(-9C50 0 0 0 - 2C41ooo 31c 4oo10+ 15 c32000 + 2 c31olo - 4 3C3002o - 2C23000 -

15C2 20 1 o - 48C210 2o 59C20030 - 9c1 4 000 + 24cI 3oo - 21e 12020 + 86c1 0o30 - 61CIo040 +
9C04010- 22co 3o2o + 21Co20 3 0 - 38coio 4o + 23coooso) + 33(9Csoooo - 7c41000 - 22c 4oo 1o -
17C32000 + 22c3 10 10 + 21C300 20 + 17C23o00 + 27 C2102o - 38c 2 030 7cI 4o00 - 22co3010 -

27c12020 + 23c1oo40 - 9co5oo0 + 22Co4010 - 21co3020 + 
38 co2o3o - 23co 040 ) + 9C4oo1o -

9c 4 o00 + 2c31010 - 2C31001 - 22c3 oo2o + 22c300 11 - 15c 2 20 10 - 15c22o + 21C20030 -
21c20021 + 2co3010 - 2co3001 + 48c1 o30 - 38c1o04o + 38c1 oo31 + 9Co 4o10 - 9Co4001 -

22co3 o2 o+22co3o I +21Co203o-21Co 202 1 -38co 1o 4o+38co 1o31 +23coooso-23ooo4l)/48

88: C21101 = (a 4 (23csoooo-6lC4 1ooo-38c 4 ooo+59c3 200 0+86c3 11 oo21C3o200-43c23000-

48C2 2 10 0 - 21C2 1200 - 22c 20 30 0 + 3c 1 4ooo + 2c1 3loo - 15c 1 220o + 24cl 1 300 + 9C10400

9Cosooo - 2co4100 + 15C03200 - 2CO2300 - 9CO14oo) + 64(23c4 1ooo - 23C40100 - 38C32000 +

38C30200 + 21C 230o0 + 27C22100 - 27c21 200 - 21c 203oo - 22cI4000 + 22cl3loo - 22cl1300 +

22co 4oo + 9Co5000 - 7co4ioo - 17Co3200 ± 17co2300 + 7coI400 - 9CooSoo) + 23c5oooo -
38c4 1000 - 38C40100 - 23C4 o 0 1 + 21c 3 20 0 0 + 48c3 100 -r 38c3 100 1 + 21C30200 + 38C30101 -

22c23ooo - 21C 2200 1 - 22C20 300 - 21c 20 201 + 9C14000 + 2c13100 + 22c1 3001 - 15C12200 +

2cII300 + 9C10400 + 22c10l 3 1 - 9C04001 - 2c0 3101 + 15C0220 1 - 2co0301 - 9C000)/48

89: C12101 = (a 4 (9C6 o0 0 0 - 31c 4 100 0 + 2C40 100 + 43C3 2 000 - 2c3 100 - 15C30200 - 59C23000 +

48C22100 + 15C21200 + 2C20300 + 61cI4000 - 86c13100 + 21c1 2200 - 24c11300 + 9C1O4OO -

23Co5 ooo 3 8 co4Ioo - 21cos 2 oo+ 22co 23 oo - 9Co 4 oo) + 04(9C4 1ooo - 9C4 ooo- 22C32000+

24c311oo - 2C30 200 + 21C23000 - 21c 221oo - 15C21200  15C20300 - 38cI4000 + 86cl3lOo -

48c1 2200 + 2c, 1300 - 2cIO4OO + 23co5 ooo - 61Co41oo + 59c03200 - 43co2300 + 31coI40o -
9Coo5oo) + 9csoooo - 22c4 1o00 -

2 C4o1oo - 9C4oool + 21C32000 + 22C31001 - 15C30200 - I
2C30101 - 38C23000 + 48C2210 0 - 21c 2 oo 1 + 2C2o300 + 15C20 20 1 + 23c1 4000 - 38c13soo +

38C3001 + 21c1 2200 - 22c l o3 0 0 + 9C10400 - 2clo3 01 - 23co 4001 + 38Co3101 - 21Co 2 20 1 +

22coI301 - 9Co0 401)/48

90: C11201 = (a4 (9C50000 - 7C41o0 0 - 22C4 1 o0 - 17c 32 000+ 22c31100+ 21C 30200 + 17c230oo+

27c21200 - 38C2o300 + 7cI4o0 - 22cI3100 - 27c1 22oo + 23c1 o400 - 9Cosooo + 22co4ioo -

21Co3200 + 38co2300 - 23coI4oo) +04 (9C41100 - 9C40100 + 2C32000 - 24C3 1 0o + 22C30200 -

15C23000 + 15C 22100 + 21c 21200 - 21C 203oo + 2cI4000 - 2cI3100 + 48c1 2200 - 86c,1 300 +

38ciO 4OO + 9cOSO00 - 31CO4100 + 43C03200 - 59C02300 + 61C 01400 - 23coo5oo) 4 9C50000 +
2C41000 - 22C40100 - 9c4000 1 - 15C 32000 - 2C3 101 + 21C 3 0200 + 22co 0o, + 2C23000 +
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15C2200 3 + 48C 2o - 38C 2030o - 21C 20 201 - 9c14ooo - 22c131oo - 2c13OO + 21cl2200 -

38cll3oo- 23¢lo 4oo- 38clo 3ol - 9C4oo1 - 2203101 - 21C0 220 1 + 38O 13O1 - 23oo4ol)/48

91: C210 0 2 = (C310o 1  C22001 + C21101 - c21011)/4

92: Co12002 (C22001 -l C13001 C1 -2101 C 12011)/4

93. C2010 (c3o1o1 - C2 1101  C20201  C 20111) /4

94: C02102 = (c12101 
- C031oi - C02o1 Co2111)/4

95: C10202 = (c202 o 1 + C11201 + C10301 C 0211)/4

96: C01202 = (C11201 + C02201 + C01301 C 01211)/4

97: C20012 = (C30011 + C21011 + C20111 t C20021)/4

98: C02012 = (C12011 + C03011 + C02111 C02021)/4

99: C00212 = (C10211 + C01211 + C00311 C0022 1)/4

100: C10022 = (C20021 + C11021 + C10321 + C1003l)14

101: C01022 = (C11021 + C02021 + C01121 + co0o31)/4

102: C00 122 = (CIO121 + C01121 + C00221 + coolai)/4

103: c20003 = (c30002 + C21002 + C20 02 + C20012)/4

104: Co2003 = (C12002 + C0300 2 + C021o2 + co2o12)/4

105: C00203 = (c10202 + C01202 + Coo3o2 + C0021 2)/4

106: C000 23 = (C10022 + Co022 + C00122 + cooo32)/4

107: C10004 = (255C4o001 + 680c 31 oo + 680c30101 + 680c30011 - 3060c30002 + 1020C22001 +
1020c 2 110 1 + 1020c21 o1 - 4032c2 1o0 2 + 1020C20 201 + 1020c20111 - 4032C20102 +

1020c 200 2 1 - 4032C200 12 + 8838C20003 + 680C 1300 1 + 1020c12101 + 1020c12011 -

4032c12002 + 1020c112o1 + 1020c11021 -
680¢O130 + 1020clO21 - 4032c1 o2o2 +

1020clo1 21 +680cIoo 3 1 -4032C Io0 22+251CO400  +664co3 01 +664co30 11 -3012co3oo2 +
996C 02201 + 972co 211  - 4032CO210 2 + 996C0 202 1 - 4032co20 2 + 8478o 2oo3 + 664Co 1301 +
972col21l - 4032co12o2 +972co0 1 21 + 664coo31 - 4032coIO22 + 251Co0 401 + 664CO0 311 -
3012coo3 o2 + 996C00 221 - 4032co0 212 + 8478oo2o3 + 664oo1 31 - 4032coo122 + 251cooo0i -

3012cooo3 2 + 8478Cooo23)/1008

108: C01004 = (-392C4O001 - 680C3 1o 1 - 1228c3 olol - 1228C300 11 + 4704c3ooo2 - 1020C22001 -
1020C2 1101 - 1020C21 ol1 + 4032c2100 2 - 1842C20 201 - 2664c2o 1 1 + 4032C20102 -

1842C20 0 2 1 + 4032C200 12 - 21168C20003 - 680 13oo01 - 1020c12101 - 1020c]2011 +
4032c1 200 2 - 1020c11201 - 1020c, 1021 - 1228clo301 - 2664clo211 + 4032clo2o2 -

2664clo2 1 - 1228cloo31 + 4032c1 oo 2 2 -35532c 0oo04 - 114co4ooi - 116co31o1 -
116cO3011 + 1368Co3002 - 174Co2201 + 672co2111 + 4032co2102 - 174co202, + 4032co2012 +
38 52co o2o3- 116co1 3o +672o 1 211 +4032co0 o2 +672olI2l - 116Co1031 +4032co]022-
251Coo4o - 664Co0311 + 3012Coo 3o2 - 996co0 221 + 4032CO0212 - 8478Co0203 - 664coo131 +
4032coo122 - 251Co004 1 + 3012cooo3 2 - 8478Coo023)/34524

109: Cooo 4 = (- 392C4o0o 1 - 1792C31l0 - 116c3 olol - 1228C300 11 + 4704C3000 2 - 2688C2200 1 -
1020C211ol-4356C2 1011+4032c 2 loO2 -174C 20201+672C 2ol11 +4032c 20102-1842C20021+

4032c200 12 - 21168C2o00 3 - 1792c) 3001 - 1020c 12 10 1 - 4356c1 2011 + 4032c1 2002 -
1020cI1 2ol -4356c,1 o21 - 116eIo 3c +672clO 2 , +4032c 1o2o2+672eo] 21 - 1228c1oo3, +
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4032c 10022 -- 35532c 10004 - 392cU,4c0 I -I16clA 1 01 - 228c(1301 -4704c 0 3O(2- 174CO2201 -t
672CO2 1 11 -t4032CO2 102 - 1842CU2021 -4 0 3 2cCc012- 21 168c(12003 - 1 l6CO1 3 01 -672co 12 1 1
4032cu1202+--6 72 cc)1 121 - l 2 28coirj~li 40 3 2 c.ilQ22 - 35532c0)1004 - 2 7 COo0401 + 448c0031 I -

324CO0 30 2 * 
6 72 cOO221 + 4032cc-,212 - 16542cr0o2c,3 448cic,131 - 4032coo1 22-251CO004 1 +

3012CO003 2 - 847 8coclo23), 70056

110: C000~~14 I-- ( - 14C4 0001 - 64C3j~1 I - 64C3r-I
1
l -I6c~o I - I68C30002 -96C22oO I - 2 16 C21 101 +

24C2 1011I -~ 144C2100 2 - 96C2U2u1 -24C 2 , 1 11 144C2 0 I0 2 -- 24CVoo 2 1 -.- 144c 2oo] 2-756c2 0003-
64c 13 001- 216c 2 101 -.24c 12 011 1.-44c 2 0 2 -216c 112 01 - 24C 110 2 1- 64C103 01 - 24C 10211 +

l44clO20 2 - 24cl 0 121 ~-l6cloo.3 - 44(' 1 00 2 2 +± 1269c', 1 0 4 - 14CO4 0 0 1 - 6 4 CO3101 +

16CO3011 - 168C03 0 0 2 -96cO22,I ' 
2 4 C(1211 - 144CO2 1 02 -1 24CO22 - 144CO2012 -I

7.56c02003 -64coI 30 1 - 24co1 2 ll-~ 144coI 2 02 -24coll2 1 + 16C01 + 144co1022 +

1269co1 0 o14 - 14COC4 0 1  l6co0 3 li 168cO03o2 -r24CO0221 -- - 144CO0 2 1 2 - 756C0 0O3 +

16cool 31 + 
14 4ccol22 +~ 1269cool 1 4 -+ 6cCI00 4 1 -72c 0 0 3 2 - 1044CO002 3)/3771

111: C00005 = (C10004 - C000 CQj- t C00+COCC14) '4

112: COI 11 2 = (-9C4 000 1 - 24C3 1 001 - 24C3()0 1 - 24C3001 I - 108C30002 - 36C22 00 1 - 36C2 1 1 01 -

36C2 10 1 1 + 54C2 1 0 0 2 -36C 20201 - 36C2 01 11 -- 54C2 0102 -36C2002 1 -- 54C2 00 12 -486aC20003 -
24CI 3 001 -36c2 10 1 - 36c 2 11 -'54CI 20 02 -36clI 2 1 - 36clIO2 1 -24CIO3 0 1 -36cl0211 +

54I22- 36c1 01 2 1 - 24clOO31 + 54CIO02 2- 972 cloood C04001 + J6cO3lOI + 16c03011 -

12cO30O 2 + 24cO2 2 0 1 - 84O11- 36c0 2102 +t 24CO2 02 1 - 36c0 2012 + 54C0 2003 + 16cols01 +
84co1 211 - 36coI 202 -t 84col 1 2 1 -i-16c 0oO31 - 36co1 022 - 108colOO4 +C 0 0 4 0 1 + l6c0311 -

12C032- 2 4 CO0221 - 36c00 2 12 +± 54CO0 20 3 +f l6 cool~j - 36cool22 - 108coo104 + C00 04 1 -

12cQ0032 + 54CO00 23 - l08C 00 14 - 162coo 05)/180

113: C10 1 12 = (- 2C4 0001 - 24c3l001 + 4C30 101 + 4C30 0 1 1 + 24CS0002 - 36C2200 1 - 36C2 11 01 -

36C2101 1 +4 54C2 100 2 + 6C2020 1 + 48C20111 - 9C20102 + 6C20021 - 9C20 0 12 - 108C20003 -

24I01- 36c1 2 l01 - 36c 1 20 1 1 -+ 54C 12 00 2 - 36c 1 12 0 1 - 36c 1 1 02 1 + 4c 103 0 , + 48CIO211 -

9 C10202 -,- 48c101 21 + 4CIO03 1 - 9CI0022 +4 216clO0 4 - 64Ol- M2OMio - 12C03011 +

72cO3 0 02 - ISCO22 0 1 -- 27c 02 1 02 - 18C0 2 0 2 1 +#-27c02012 - 324c02003 - 12c013oi + 27c0 1202
.5cl12- l2coio31 +- 27c010 22 + 648colOO4 + C0 0 4 0 1 + l6c003 11 - 12C0 0 3 0 2 + 24CO0 221 -

36CO0212 +f 54CO0 20 3 + 16cooI3l - 36coo1 22 - 108CO0104 + C0004 1 - 12c0 OO3 2 + 54CO00 23 -

IOSCOOO1 4 - 162c0 oos)/126

114: C110 12 = (-2C4 00 - 8c 310 01 - 12C3 0 1 01 + 4C30 0 11 + 24C30 0 0 2 - 12C2 2 00 1 - 36C21101 +
12C2 10 1 1 + I8C2 10 0 2 -

18C20201 + 27C2 01 02 + 6C20 02 1 - 9C2 00 1 2 - 108C20003 - 8C13001-
36cl 2 l0 1 -+ 12cI2oii - 18C1 2002 - 36c, 120 1 +4 12c,1021 - 12c,0 3 0, + 27c10202 - 54c0 1j1 2 +

4cl0031 - 9CIO02 2 + 216clO0 04 - 2c0 4 00, 12c03101 + 4C 0 11 + 24CO3 0 02 - 18C02 20 1 +
2 7Cc,2102 + 6cO2o2 1 - 9C02 012 - 108C0200 3 - 2coI301 + 27co)2o2 - 54co, 1 12 + 4co1o31
9CO 1022 + 216C 0 04 - 3c 00 40 1 + 36cOO3O2 - 162cC0 0 20 3 -4.- 324c003 04 + C00 04 1 - 12CO00 3 2 +
54cO0 0 2 3 - 108CO0 0 14 - 162c00005)/72

115: C11 10 2 = (-C 4 000 1-4calool-4c 3 oloI±12C3 0 0 0 2 -6C 2 2 0 0 1 -12C 2 1 10 1-*9C2 1 0 0 2 -6C 2 0 20 ,±

9C20102-54C20003-4c,3ool-12c 2 101±9Cl 2 1(2 -12cI 2 ,-27clcI2--4clO3ol±9C]O202-
J 27cloll2+1O8CoOo 4 -CO4 oI--4CO3 101t2CO3 0o2 -6Co22 I±9C 2 12-54CO 2 003 -4cOl31+

9C0 1202 -27co 11 12 + I0O100od- CO04fl -~ 12C00 30 2 -54CO 02 03 ± 108C001I04 - SIC0000)/9

116: C110 03 = (C2100 2 ± C12002 + C1112I C ]112/,

117: C10103 = (C20102 -+ C11102 +t C10202 +~ C10112)/4
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118: c0110 3 = (CI 1 1 0 2 -r C0 2102 -1 Cn1202 "- C1112)/4

119: C1 0 0 13 = (C20 0 1 2 + ClI012 +f CI 1 12 CI( 1022)/4

120: C0 10 13 = (CIIo 12 + C02012 - C01 1 12 + C01022 )/4

121: C001 13 = (Ceo 1 12 + Co11 2 CoC,2 1 2  COe 1 2 2 )/4
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